Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain.

نویسندگان

  • Neal C Burton
  • Jay S Schneider
  • Tore Syversen
  • Tomás R Guilarte
چکیده

The neurological sequelae of chronic Mn exposure include psychiatric, cognitive, and motor deficits, suggesting the potential involvement of multiple neurotransmitter systems and brain regions. Available evidence in rodents suggests that Mn causes dysregulation of glutamatergic and gamma-aminobutyric acidergic (GABAergic) neurotransmitter systems. However, this has never been studied comprehensively in the nonhuman primate brain. Cynomolgus macaques were given weekly i.v. injections of 3.3-5.0 mg Mn/kg, 5.0-6.7 mg Mn/kg, or 8.3-10.0 mg Mn/kg for 7-59 weeks. Total glutamate, glycine, and GABA concentrations were measured by high performance liquid chromatography (HPLC) with fluorescence detection in 13 brain areas in Mn-treated and control monkeys. Neurotransmitter concentrations did not change with chronic Mn exposure. Quantitative autoradiography of the N-methyl-D-aspartate receptor, the GABAa receptor, and glutamate transporters was used to assess their regional distribution. Each of these neurotransmitter receptors remained almost universally unchanged with Mn treatment. Immunohistochemical analysis of glutamine synthetase (GS) demonstrated a selective Mn-induced decrease in the globus pallidus, which could potentially alter synaptic and/or astrocytic levels of glutamate. This study shows that in nonhuman primates with previous documentation of Mn-induced brain pathology, the glutamatergic and GABAergic systems appear to be mostly unaffected by chronic Mn exposure with the exception of reduced GS expression in the globus pallidus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manganese Neurotoxicity: Lessons Learned from Longitudinal Studies in Nonhuman Primates

BACKGROUND Exposure to excess levels of the essential trace element manganese produces cognitive, psychiatric, and motor abnormalities. The understanding of Mn neurotoxicology is heavily governed by pathologic and neurochemical observations derived from rodent studies that often employ acute Mn exposures. The comparatively sparse studies incorporating in vivo neuroimaging in nonhuman primates p...

متن کامل

ترکیبات ارگانوفسفره و سیستم گابائرژیک مغز

Organophosphorus (OP) compounds are cholinesterase inhibitors widely used as pesticides in agriculture and nerve agents in battlefields. Exposure to these compounds leads to accumulation of acetylcholine at cholinergic synapses and overstimulation of muscarinic and nicotinic receptors by inhibiting the enzyme acetylcholinesterase. Seizure activity is one of the major manifestations of OP poison...

متن کامل

Optogenetics: Control of Brain Using Light

Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....

متن کامل

JPET Miniseries: Imaging Nonhuman Primate Positron Emission Tomography Neuroimaging in Drug Abuse Research

Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive prope...

متن کامل

Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 111 1  شماره 

صفحات  -

تاریخ انتشار 2009